Definitions from Wiktionary ()
|
|
▸ adjective: (botany, not comparable) Pertaining to a root (of a plant).
▸ adjective: Pertaining to the basic or intrinsic nature of something.
▸ adjective: Thoroughgoing; far-reaching.
▸ adjective: (lexicography, not comparable) Of or pertaining to the root of a word.
▸ adjective: (phonology, phonetics, not comparable, of a sound) Produced using the root of the tongue.
▸ adjective: (chemistry, not comparable) Involving free radicals.
▸ adjective: (mathematics) Relating to a radix or mathematical root.
▸ adjective: (slang, 1980s & 1990s) Excellent; awesome.
▸ noun: (historical, 19th-century Britain, politics) A member of the most progressive wing of the Liberal Party; someone favouring social reform (but generally stopping short of socialism).
▸ noun: (historical, early 20th-century France) A member of an influential, centrist political party favouring moderate social reform, a republican constitution, and secular politics.
▸ noun: A person with radical opinions.
▸ noun: (arithmetic) A root (of a number or quantity).
▸ noun: (linguistics) In logographic writing systems such as the Chinese writing system, the portion of a character (if any) that provides an indication of its meaning, as opposed to phonetic.
▸ noun: (linguistics) In Celtic languages, refers to the basic, underlying form of an initial consonant which can be further mutated under the Celtic initial consonant mutations.
▸ noun: (linguistics) In Semitic languages, any one of the set of consonants (typically three) that make up a root.
▸ noun: (chemistry) A group of atoms, joined by covalent bonds, that take part in reactions as a single unit.
▸ noun: (organic chemistry) A free radical.
▸ noun: (algebra, commutative algebra, ring theory, of an ideal) Given an ideal I in a commutative ring R, another ideal, denoted Rad(I) or √, such that an element x ∈ R is in Rad(I) if, for some positive integer n, xⁿ ∈ I; equivalently, the intersection of all prime ideals containing I.
▸ noun: (algebra, ring theory, of a ring) Given a ring R, an ideal containing elements of R that share a property considered, in some sense, "not good".
▸ noun: (algebra, ring theory, of a module) The intersection of maximal submodules of a given module.
▸ noun: (number theory) The product of the distinct prime factors of a given positive integer.
Similar:
Opposite:
Types:
Phrases:
Adjectives:
Colors:
|
▸ Word origin
▸ Words similar to radical
▸ Usage examples for radical
▸ Idioms related to radical
▸ Wikipedia articles (New!)
▸ Popular adjectives describing radical
▸ Popular nouns described by radical
▸ Words that often appear near radical
▸ Rhymes of radical
▸ Invented words related to radical